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Abstract.. Certain structural aspects of two-dimensional Penrose tilings are studied using 
de Bruijn’s pentagrid picture. We discuss the statistics of hexagons, decagons and ‘worms’ 
(sequences of adjacent hexagons bounded by two decagons). We show that within the 
discrete framework considered here, phason modes and structural transformation modes 
are located along particular ‘worms’ and we derive the spatial distribution of the latter. 

ResumC. Certaines caracteristiques structurales des pavages de Penrose bidimensionnels 
sont ttudites dans le cadre de la pentagrille de de Bruijn. Nous calculons les statistiques 
des decagones, des hexagones et des ‘tubes’ (ce sont des stquences d’hexagones adjacents, 
borntes par deux dicagones). Nous montrons que dans le cadre du modkle discret considtr.6 
ci-dessus, les modes de type ‘phason’ et ‘transformation structurale’ sont localisis suivant 
certains ‘tubes’, dont nous prtcisons la distribution spatiale. 

1. Introduction 

Future progress in the field of aperiodic crystals has to rely on detailed understanding 
of the structural properties of the latter. Much progress has been made in understanding 
the structure of infinite Penrose tilings (PT) (Penrose 1974, 1979, Gardner 1977, 
Grunbaum and Sheppard 1987) and analysing topological defects in such geometries 
(for a comprehensive overview of the subject see Gratias and Michel(l986) and Henley 
(1987)). The seminal work of de Bruijn (1981a, b) has demonstrated that a PT can be 
obtained by a direct projection of a five-dimensional hypercubic lattice onto a two- 
dimensional space. This method has been extended to quasicrystals in three dimensions 
as well (Kramer and Neri 1984, Duneau and Katz 1985). The relation between a 
high-dimensional periodic lattice and a lower-dimensional aperiodic lattice also enables 
us to define and classify topological defects in the latter (Levine et a1 1985, Bak 1985, 
KlCman et a1 1986, Bohsung and Trebin 1987). 

The structure concerning local scales (as opposed to the hydrodynamical picture 
of quasicrystals) is not that well understood. Indeed, the statistics and hierarchical 
properties of PT, including finite domains in such structures, have been investigated 
(Gardner 1977, de Bruijn 1981a, b, Sadoc and Mosseri 1984) and expressed in terms 
of transfer matrices of fractals (Peyriire 1986, Gefen et a1 1988). However, a detailed 
geometrical understanding of finite patterns and local (non-topological) defects in PT 
is still lacking. Such understanding appears to be necessary to determine the relevance 
of the theory of ideal quasicrystals to systems that occur in Nature. Whether such 
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systems are quasicrystals with imperfections or genuinely disordered systems is still 
an open question. It is simpler and therefore natural to consider as a first step 
two-dimensional PT. 

An important issue in the present discussion is phason modes, first introduced by 
Levine er a1 (1985) and later shown to be related to local excitations (KlBman er a1 
1986, Socolar er a1 1986). The analysis detailed below focuses on such local excitations 
and on the geometrical aspects of their propagation. For this purpose we employ the 
discrete model, put forward by de Bruijn (1981a, b). The relation between this discrete 
model and a hydrodynamic picture has been considered by Socolar er a1 (1986) and 
by Frenkel er a1 (1986). 

Following a review of some important results of de Bruijn’s analysis of PT, § 2 is 
devoted to a geometrical study of the strips of which a PT is made. These strips consist 
of sequences of rhombi adjacent along parallel edges. They may be considered as the 
natural ‘substrates’ for sequences of hexagons called ‘worms’ (Gardner 1977, de Bruijn 
1981a, b, Socolar et a1 1986) which, in turn, are the substrates of the local excitations 
discussed here. These worms are studied in § 3 where we present detailed statistics of 
their lengths and their elementary ‘building blocks’. In § 4 we introduce phason 
excitations and structural transformations and investigate how they are manifested in 
terms of changes along worm configurations. We emphasise at this point that since 
the connection between atomic or molecular arrangements and quasicrystalline patterns 
is not yet completely understood, we shall not discuss here the energetics and dynamics 
associated with our structural defects. It is possible, of course, to assume certain 
dynamics for the propagation of phason excitations (hopping mechanism for example) 
but we shall not attempt at this point to relate our geometrical picture to measurable 
quantities. 

2. Previous results, definitions and basic relations 

In this section we shall define the ingredients of the geometry of worms. We first 
review some basic results pertaining to de Bruijn’s picture, which will be employed 
subsequently in our analysis. 

Figure l ( a )  shows a perfect two-dimensional PT. It consists of thin (t)  and thick 
(T) arrowed rhombi (figure l (b) ) .  These rhombi are put together to tile the plane and, 
at the same time, satisfy certain matching rules imposed by their arrowed edges. The 
PT of figure l (a )  is the dual (up to continuous distortions) of a planar pentagrid shown 
in figure 2(a ) .  Figure 2 ( b )  depicts the intersections dual to the tiles ( t )  and ( T )  of 
figure l (b) .  The pentagrid consists of a superposition of five sets of parallel, equidistant 
lines perpendicular to the five directions vJ ( j  = 0,. . . ,4) of a regular 5-star (figure 
2 ( a ) ) .  Any point M belonging to the j t h  set of the pentagrid satisfies 

OM*v,+y,=k, (2.1) 
where O M  is a planar vector corresponding to the point M (0 is an arbitrary origin). 
Here k, is an integer ( j  labels the set; every point on a given line belonging to the set 
j ,  is described by the same k,). ( Y , ) ~ = ~ ,  ,4 is a set of five real numbers such that 

4 

yj = c. 
j = O  

One gets the standard PT of figure l ( a )  if C is an integer (de Bruijn 1981a, b). If 
C is not an integer, the resulting generalised PT consists of four types of tiles T, t, T’ 
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T ’  
i d )  

0 
T t 

( b  1 
Figure 1. ( a )  A perfect Penrose tiling consisting of thin ( t )  and thick (T) rhombi (see de 
Bruijn 1981a, b). ( b )  The elementary rhombi (t) and (T) for the perfect Penrose tiling. ( c )  
A generalised Penrose tiling (Z y, =0,5) generated from t, T (white) and t’, T’ (dark) 
rhombi. ( d )  t’ and T’ rhombi (note the difference in the arrowing with t and T). 

f b l  

$ 4 3  3 4 YJZ4 J C O  jy J : o  /:3 

Figure 2. ( a )  de Bruijn’s pentagrid. The five vectors U, ( i  = 0, . . , , 4 )  are perpendicular to 
the five sets of lines which make up the pentagrid. ( b )  Intersections of the pentagrid dual 
to the tiles (t) and (T) of figure l ( b ) .  

and t’ (figure l (c ,  d ) )  (Pavlovitch and Kleman 1987). In this section and in § 3 we 
consider the geometry of worms on the standard PT only. We show in § 4 how 
generalised PT are obtained from the standard PT by introducing structural trnnsforma- 
tions along certain worms. 

With each mesh of the pentagrid one can associate a set of five integers ( kj)j=o,...,4 

defined by 
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where M is an arbitrary point of the mesh and [ a  1 denotes the smallest integer larger 
than a. Associated with each mesh is a unique set (kj)j=o,,,.4. De Bruijn has shown 
that (2.3) defines a subset of Zs such that the points 

4 

O P =  2 kjvj 
j = O  

are the vertices of the PT dual to the pentagrid. Hence each vertex of the FT corresponds 
to a mesh in the pentagrid and is defined by a set of five integers {k,}. 

Consider now an edge (of a rhombus in de Bruijn’s tiling) which is directed along 
vJ ( O c j c 4 ) .  We then note that the tiling contains infinite strips of adjacent rhombi, 
each having two edges parallel to v,. Such a strip is shown in figure 3 ( a ) .  One can 
define the image of the strip in the pentagrid picture (figure 3 ( b ) ) .  It consists of 
intersections of a particular line of the j th  set with lines of other sets; each intersection 
of the former with a line of the Ith set ( I  # j )  may be mapped back to a rhombus whose 
edges are directed along v, and v,. Thus, the strip is completely defined by its sequence 
of intersections with the lines of the other sets (de Bruijn 1981a, b). Below we shall 
study in some detail these sequences and classify the various structures that occur 
along this line. 

1 
4 
3 
2 
1 
4 

3 
1 
4 
2 

1 

4 

i a l  i b l  
Figure 3. ( a )  An infinite strip of the j = O  set. ( b )  Its image in the pentagrid picture. 

To be more specific let us select a particular line of the j = 0 set and denote it as 
a reference line (RL) (figure 4(a) ) .  An intersection of the RL with a j = 1 line, i.e. a 
line that belongs to the j = 1 set (a j = 4 line) is dual to a T-tile whose edges are along 
vo and v 1  ( vo and v4). Similarly any intersection with a j = 2 line ( j  = 3 line) is dual 
to a t-tile whose edges are along vo and v2 ( vo and v3). Choosing the distance between 
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Figure 4. Intersections of a reference line RL with other pentagrid lines (not all the 
intersections are shown). ( a )  Various periods along the RL. ( b )  Geometrical parameters 
which characterise various meshes. ( c )  A hexagon of type H,. ( d )  A hexagon of type H,. 

two consecutive parallel lines to be equal to 1, the distance on the RL between two 
intersections with consecutive lines of the j = 1 set is (see figure 4 ( a ) )  

AD = (sin 72)-’. (2 .5a )  

A D  corresponds also to the distance between two intersections of the RL with two 
consecutive lines of the j = 4 set (see figure 4 ( a ) ) .  
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Similarly, we have for the distance between two intersections of the RL with 
consecutive lines of the j = 2 (or j = 3) set (figure 4(a) )  

A ,  = (sin 36)-’. (2.5b) 

We note that 

( 2 . 5 ~ )  

where r = ( 1  + 6 ) / 2  is the golden ratio?. 
We now recall that a pentagrid is defined by five real numbers ( ~ j ) , ~ ~ , . . . , ~ ,  such that 

the relation (2.2) is obeyed. In this section we shall introduce more convenient 
parameters and enumerate the degrees of freedom in the construction of the pentagrid. 
Let us consider intersections between the lines of the j = 1 set with the lines of the 
j = 4 set. These intersections are along equidistant lines, parallel to the j = 0 set, whose 
spacing is 1, = r (see the broken lines in figure 4(a)) .  Let d, be the distance between 
the RL and the vertical line defined by the intersections of sets j = 1 and j = 4 (hereafter 
denoted (1 ,4)) ,  which is the closest to the RL on its right side (see figure 4(a)) ,  and 
let d b be the distance between the RL and the vertical line defined by the intersections 
of sets j = 1 and j = 4, which is the closest to the RL on its left side. It is easy to see that 

(2.6a) 

d, and d b are chosen in a similar way, for the intersections of lines of the j = 2 set 
and lines of the j = 3 set. They satisfy 

1, dQ f d b =  7 - l  (2.66) 

where 1, is the distance between two consecutive lines (parallel to the RL) along which 
sets j = 2 and j = 3 intersect (see figure 4(a)) .  

One can see in figure 4(b) that, if we consider the intersections (1 ,4)  which are 
the closest to the RL on its right (on its left), the corresponding lines of the j = 1 and 
j = 4 sets cut the RL along intervals SAD(SAb). Here, SAD represents the interval which 
is the base of a triangular mesh, whose sides are segments of a line of the j = 1 set and 
a line of the j = 4 set, such that the apex of this triangle is to the right of the RL. SA b 
is the base of a triangle whose sides are also segments of a line of the j = 1 set and of 
a line of the j = 4 set, but in this case the apex is to the left side of the RL. It is easy 
to show that 

- 1  A D / A Q  = T 

1, E dD + d b  = 7. 

where 6A, and S A b  are defined similarly to S A D  and SAL for (2 ,3)  intersections. 

origin from point 0 to point 0’, we have 
The pentagrid is defined by (2.1) with an arbitrary origin 0. If we change the 

( 0 0 + O ’ M )  * v j + y j = k j .  

Hence, the new pentagrid is defined by ( Y , ! ) ~ = ~ , . . . , ~  such that 

y,! = yj +OO’ * vj. (2.8) 
We see that the choice of an origin corresponds to two degrees of freedom. This 
follows from the fact that the vector 00’ is two dimensional. Let us therefore choose 

t The subscripts Q and D follow de Bruijn’s notation for the various types of vertices in the PT. 
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a particular origin 0 taken in between two neighbouring intervals SAD and SA,, on 
some particular RL identified by j = 0, such that yo = 0. Now the pentagrid is entirely 
defined by three quantities related to the particular RL we consider, namely d,, dD 
and A, where A measures a distance between two neighbouring intervals SAD and SA, 
on the RL. We have the following correspondence between yi ( i  = 0,1,2,3,4)  and 
SAD, SA,, X , A :  

YO=O 

where X is the distance between the origin 0 and the middle point of the interval SA, 
(figure 4(b)). 

When we set C in (2.2) to be equal to 0, we obtain from (2.9) that 

SAD cos54 1 
SA, COS 18-7’  

- 

By (2.5) and (2.7) we have 

and 

Combining the previous three equations we obtain 

%-SA,=,= - d TdQ. 
AD A Q  

(2.10) 

(2.11a) 

(2.1 1 b) 

(2.12) 

This shows that d, is determined by the choice of dD. Only two quantities are 
independent: dD and A. 

Consider now how the distance dD varies as we proceed from one line of the j = 0 
set to the next. As already stated, ID = T ( 2 . 6 ~ ) .  Since two consecutive lines of the 
j = 0 set are a unit distance apart, dD for the next j = 0 lines is defined in the following 
way: let us denote by d2, the heights of the triangles bound by lines of the j = 1 and 
the j = 4  sets, whose base is on the nth line of the set j=O.  Then 

dL=mT-n  (2.13) 
where m is chosen such that 0 < d g  < T. That is dL  = m r  (mod 1). According to the 
theory of irrational numbers (Niven 1956), it follows that dD is densely and uniformly 
distributed between 0 and ID = T. Similarly dQ is densely and uniformly distributed 
between 0 and 1, = T-’. 
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At this point we would like to describe the configurations along the RL for different 
values of dD between 0 and 7. We start by stating some results concerning configurations 
on the RL in the pentagrid, and then turn to the dual geometry in the PT. 

An important component in the configurations that arise along the strip dual to 
the RL are triangular meshes whose bases are on the RL and whose sides are segments 
of lines of the sets j = 1 and j = 4. As shown in figure 4(c), the dual of such a triangle 
is an hexagon containing two tiles of type T and a tile of type t. We denote these 
hexagons by HD since the central vertex is a D (deuce) in de Bruijn's notation 
(de Bruijn 1981a, b). Similarly a triangular mesh bounded by the RL and segments of 
lines j = 2 and j = 3 is dual to an hexagon Ho containing two tiles of type t and a tile 
of type T (see figure 4 ( d ) ) .  

We will now show that when 0 < dD < 1, a segment SA, (6AD) which does not 
overlap with a segment SAD (SA,) is the base of a triangular mesh. In other words, a 
triangle whose base is SAD (SA,) is not intersected by any line of the pentagrid. This 
means that the configuration dual to a SAD (SAo) interval will be a hexagon of type 

This assertion is easily proved for the intervals SA,. In figure 5(a) ,  we have drawn 
such an interval. We can easily see that the relative slopes of the lines imply that if a 
line of the j = 1 or the j = 4 sets cuts the triangle ABC, it necessarily cuts the segment 
AB, and the intervals S A D  and SA, are overlapping. 

HD (HI?). 

I \ J = 2  

Figure 5. ( a )  A triangular mesh based on SA,. ( b )  A triangular mesh bounded by S A D  
and other lines. 

The case of the S A D  overlapping intervals is slightly more subtle. Figure 5 ( b )  shows 
a triangle ABC, based on S A D  = AB. Let us choose the origin at C. Then y1 = y4 = 0. 
Let us suppose that a line of the set j = 3 cuts the triangle ABC along the edge BC, 
without crossing the edge AB. We easily see that if the j = 3 line passes through the 
point B, then y3 = -yo/  r (here yo < O), and if the j = 3 line passes in C, then y3 = 0. 
Since Z.j"-o y, = 0, we have y2  = ( - y o  - y3),  and we can draw the corresponding line of 
the j = 2 set. In fact when 0 < y3 < -yo /  T, we have -yo /  T' < y z  < - y o .  In the interval 
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- y / r  < y 2  < - yo ,  the line of the j = 2 set cuts the segment AB. When - y o / r 2  < y 2  < 
- yo/r ,  the interval SAD is inside the interval SA,. Hence we have shown that when 
the interval SAD is not overlapping and not contained inside SA,, it is the base of a 
triangular mesh. 

In the case T-' < d ,  < r, we have to consider 0 < d b = T - dD < 1 , and we get similar 
results, i.e. an interval SAL ( 6 A b )  which does not intersect a SA& (SA',) interval is the 
base of a triangular mesh. 

Figure 6 shows the structures that may occur along the RL as dD increases from 0 
to 7. 

( a )  0 < dD < T- ' .  Triangular meshes of bases SA, or S A D  appear only on the right 
side of the RL. IR fact in this case 1 < db < T ;  this implies immediately that triangular 
meshes of base SA b cannot exist since d b is larger than 1. In order to prove now that 
a triangle of base SAL cannot show up, we note that the total minimal length of two 
non-overlapping intervals SA b and SA b , namely 6A b + SA b (see figure 7)  cannot be 
larger than the periodicity at which SAL intervals appear, which is A,. But since 

(2.14) 

we see that such a configuration, where SAD and SA, do not overlap, is not possible. 

( 0 1  ( 6 1  ( C l  

Figure 6. Typical lines of the pentagrid, with d, varying from 0 to T. ( a )  O<d,<.r-'. 
( b )  T-' < d ,  1. (c) 1 < d ,  < T. ( I n  each case some of the triangular meshes are darkened). 

Figure 7. An impossible configuration (cf (2.14)). 
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( b )  T-'  < dD < 1. Triangular meshes of base 6AD and SA', appear. Equation (2.14) 
still holds; we also notice that, similarly 

(2.15) 

Therefore triangles of bases SA, and S A b  do not show up in this range of values of dD.  
(c) 1 < dD < 7. Triangular meshes appear only on the left side of the RL. The 

heights of those triangles are d b and d b .  
We analyse now the dual structures of figure 6 in the PT. Let us first suppose, as 

in case ( a )  above that 0 < dD < T- ' .  Then we have the following. 
(a  1) A triangle of base ah,, whose edges are segments of lines of the j = 2 set and 

of the j = 3 set, is dual to a hexagon H:,  depicted in figure 8(a) .  The index R in H: 
indicates a hexagon of type Q (see above) whose dual triangle appears on the right-hand 
side of the RL. 

(a2) A triangle of base 6AD, whose edges are segments of lines of the j = 1 and of 
the j = 4  sets, is dual to a hexagon H E  (figure 8 ( b ) ) .  

(a3)  The interval 6AD is contained in the interval SA,; the dual structure is a 
decagon Dp (figure 8(c))  (with a reflection symmetry about a line perpendicular to 
the RL). 

(a4)  When the intervals 6AD and 6AQ are overlapping, the dual configuration is a 
decagon 0," lacking the above symmetry: 6 A D  is not contained in SA, (cf figures 8 ( d )  
and 8(e)). 

Similar considerations apply when 1 < dD < T (case (c )  above), but one has to 
consider intervals 6h ', and 6A b.  The dual hexagons and decagons are then left sided: 
H b ,  H b ,  D,", 0,". 

Figure 8. Different configuration of the intervals SA, and SA, and their dual figures in 
the tiling. The central vertices of the hexagons are Q and D vertices in de Bruijn's 
nomenclature. ( a )  A hexagon HE dual of SA,. ( b )  A hexagon H; dual of SA,. ( c )  A 
decagon dual to S A D  and SA, overlapping. ( d ) ,  ( e )  Decagons dual to SA, nested within 
SA,. 
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Figure 9. ( a )  A strip satisfying T - ~  < dD < 1, in the pentagrid, ( b )  the image of ( a )  in the 
tiling. We see that left-sided configurations are separated from right-sided configuration 
by interpenetrating decagons. 

The case T-’ < dD < 1 (discussed in ( b )  above), is more delicate. Equations (2.14) 
and (2.15) show that only non-overlapping S A D  and SAL intervals may appear. They 
give rise respectively to HE and H b .  Figure 9( a, b )  shows such a line in the pentagrid 
and in the tiling. A careful examination shows that right-sided configurations are 
separated from left-sided configurations by two interpenetrating decagons. 

In summary, in § 2 we have established a description of the pentagrid in terms of 
parameters S A D ,  SA,, d D  and d,.  In order to analyse the different configurations that 
occur along the RL, we have to consider the intervals S A D  (SA,): if S A D  (SAQ) does 
not overlap with SA, ( S A D ) ,  the dual configuration is a hexagon; if S A D  does overlap 
with SA,, the dual configuration is a decagon. 

3. Length and contents of a worm 

In this section we will calculate the densities of different structures (hexagons, decagons) 
which appear along a RL. A special attention will be given to ‘worm’ configurations. 
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A worm consists of a succession of adjacent hexagons bounded by two decagons (cf 
figure 10). 

3.1. Worms along pentagrid lines, such that 0 < d D  ( 7 - l  

A hexagon H E  ( H G )  appears when an interval SAD (SAQ) does not overlap with 
another interval 6AQ ( S A D )  along the RL. Suppose we start from a configuration where 
the two intervals S A D  and SA, overlap. This corresponds to the endpoint of a worm, 
which is a decagon. Suppose moreover that the distance between the projection on 
the RL of the points of intersection of ( 1 , 4 )  and ( 2 , 3 )  is A (figure 4 ( b ) ) .  Starting from 
this configuration, we propagate the projections of the ( 1 , 4 )  and ( 2 , 3 )  intersections 
(with periodicities A D  and A Q  correspondingly) along the RL. The corresponding 
triangles overlap for the first time after n periods of A D  and m periods of A,, i.e. their 
dual is an end decagon which bounds a worm of length ( m  + n - 2 )  (i.e. ( m  - l ) H Q  
and ( n  - l ) H D  along the worm). This happens when the following inequality is satisfied: 

( 3 . l a )  

( m  and n are integers) with the minimal value of ( n  + m ) .  Dividing this equation by 
A D  we obtain 

( 3 . l b )  

An analysis of ( 3 . l b )  is presented in the appendix. The proof of (3 .1)  relies on some 
standard theorems of measure theory. It then follows that for the range of values of 

itagi ,id line with 0 < d ,  < T-'. 
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dD defined by 

(3.2) r-( P + l )  < dD < ?-P 

p being a positive integer, the allowed values of ( n ,  m )  are 

( f P + l ¶ & )  (&+2 , & + I )  (&+3 ,&+2)  ( 3 . 3 ~ )  

which means that only three lengths of worms are allowed for a given line: each worm 
consists of -2) hexagons: - 1 )  of type HD and (f; - 1 )  of type HQ ( i  = p ,  p + 1 
or p + 2). 

The case when dD is equal to a value Y P  is also discussed in the appendix: in such 
a case, there are only two allowed values of ( n ,  m), which are 

(&e* ,&I  ( & + 2 , & + l ) .  (3.3b) 

If we introduce 

-p+l p = r  - -w  
6AD+6A,- 

w =  - 7 dD and 
A D  

(3.4) 

we can obtain the relative weights of worms of different lengths. They are summarised 
in table 1.  We note that p is between 0 and FP-'. 

By relative weight we mean the number of worms of a given length, divided by the 
total number of worms, in an arbitrary large length of the RL (see the appendix). The 
worms corresponding to p = 0 cases do  not contribute to the relative weights: they 
form a set of zero measure. 

3.2. Concentration of hexagons and decagons along a strip 

As we have seen, a strip might be described either as a succession of one-sided decagons 
and hexagons (this is the case when 0 < dD < r-' or 1 < dD < T ) ,  or as a succession of 
two-sided hexagons and decagons separated by interpenetrating decagons when r-' < 
dD < 1 .  We shall employ in this section the pentagrid representation in order to calculate 
the densities of these geometrical creatures. Let us consider the intervals SAD and SA, 
plotted in figure l l ( a )  within a segment of length AD. The expectation value of the 

i- h c  

i a i  

i t b i  

Figure 11. Sequence of intersections along the RL. ( a )  SAD and SAQ intervals along the 
RL compared with A q .  ( b )  SAD and SAQ intervals along the R L  compared with A D .  
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number of centres of SA, intervals in an interval of length AD is AD/AQ.  By definition, 
in each period AD, there is one interval SAD corresponding to a right hexagon of type 
D: H E .  Therefore the remaining space available for centres of SA, intervals, which 
do not overlap with SAD (i.e. correspond to HG)  is AD-SA,+SAQ. Therefore the 
density of H:, pR( j, per unit length along a grid line is 

Consider now the intervals SAD and SA, of figure 10(b)  plotted along an interval of 
length A Q  for the case 0 < d ,  < 1. By the same argument, we calculate the density 
PR(O) of Hk 

(3 .5b)  

and the density pR(D, Q) of overlapping intervals of width SAD and SA,, i.e. of 
decagons, is 

Left hexagons are obtained by changing dD into 7 - d ,  = d b which yields 

(3 .5c)  

(3 .6b)  

( 3 . 6 ~ )  

As expected, H k  and H k  coexist in worms that correspond to 1 < dD < T,  while only 
H E  and H b  appear for T - ~  < dD < 1 .  

3.3. Statistics of worms 

Let us denote by C ( L i )  the number of worms containing (L,)  hexagons, divided by 
the total number of worms along the RL. We have Li =J;  - 2 ;  the worms contain 
( J - ,  - l ) H D  hexagons and 1)HQ hexagons. (We have f o  = O,fi = 1,h = l , &  = 2 ,  
etc). i = 3 gives C(0); this is the density of worms of zero length, i.e. pairs of consecutive 
decagons. i = 4 gives C( 1 ) ;  these worms contain on H D  hexagon and no HQ hexagons. 
i = 5  corresponds to C ( 3 )  which are worms containing one HQ hexagon and two HD 
hexagons. 

Table 1 gives the relative weight of worms of a given length, for a fixed w and p. 
Let us calculate the contribution to C(f; - 2) of an interval 
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Table 1 

Number of Number of 
Worm size hexagons D hexagons Q Relative weight 

This contribution is zero unless i = p + 2,  p + 3 or p + 4.  In other words, the interval 
(3.7) above gives contributions to three lengths of worms. We have 

(3 .8a)  

(3 .8b)  

“i-4 - 2) = I, ?-P+1- CL d p  = T-”-’( rz  In r - 1). ( 3 . 8 ~ )  

One checks that C’( fP+, - 2) + C”(fp+3 - 2) + C’”(fp+4 - 2 )  = r-p-l ,  which is the range 
of variation of p. Now the density C ( f ;  - 2 )  of the worms of length f; - 2 is obtained 
as the sum of three such contributions, with p = i - 2 ,  i - 3 ,  i - 4, i.e. 

I-L 

C ( f ; - 2 ) =  C’(f;-2)+C”(J;-2)+C”’(f;-2).  

This gives 

(3 .9 )  

~ ( f ;  - 2 )  = In T i 3 5  (3 .10a)  

with special expressions for C(0) and C ( 1 )  

1 
r 

C(0) =y ( 1  - T In r )  i = 3  (3.10b) 

i = 4 .  ( 3 . 1 0 ~ )  

The contribution to C(0) comes only from the interval T - , < w <  1 ,  and we have 
C(0) = C’( f ;  - 2 )  with i = 3. The contributions to C ( 1 )  come from the intervals F2< 
w < 1 and T - ,  < w < T-,; we have C (  1 )  = C”(h - 2 )  + C’(f; - 2), with i = 4. 

We can check that Ziz3  C ( f ;  - 2 )  = 1 (note that Hi,, C ( J  - 2 )  = ( T + ~ ) T - ~  In T ) .  

Solving (3 .1)  we have shown that worms are made of Lp hexagons with Lp = f ,  -2.  
Asymptotically Lp goes like T ~ .  Equation (3 .10a)  shows that C(L,,)  goes like T - ~ .  

Let us choose a hexagon at random in the tiling. The probability that this hexagon 
belongs to a worm of length Lp is P( Lp)  = LpC( Lp)  . Asymptotically this quantity does 
not depend on p .  Hence a hexagon, chosen at random, has (roughly) equal probabilities 
to belong to a worm of any length (provided the worm is long enough). 

1 
r 

C ( l ) = i ( r - 2 1 n ~ )  
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Let us consider a finite tiling of size R - T" and let us choose at random a hexagon 
in it. This hexagon belongs to a worm of size L,. The weighted average of the length 
of these worms can be calculated using the probability defined above. We have 

(3.11) 

where we have used the expressions of L, and of C (  L,). If we introduce R - T " ,  we 
find that 

R 
In R 

( L ) = - - - .  (3.12) 

( L )  is the average size of the worm to which a hexagon chosen at random belongs. 

3.4. Decagons 

As indicated above, when intervals 6 A D  and SA, overlap along a line of the grid, the 
dual figure in the PT is a decagon. 

DR (right decagons) are shown (figures 8(c, d ,  e ) )  both in the pentagrid and in the 
FT. The frequency of D can be calculated by a method akin to that of 9 3.3. Consider 
O <  dD < 1 (figure l l ( a ) ) .  The average number of centres of S A D  in the period A, is 
A,/,+,. We will obtain a decagon ofthe type shown in figure 8( c) when S A D  is included 
in ah,. The frequency of this configuration is (SA, - 6 A D ) / A Q .  Hence, the density of 
these decagons (D,) is 

(3.13) 

The total density of D is given by equation (3 .5~) .  By subtraction we obtain, for 
the decagons shown in figures 8 ( d )  and 8 ( e ) ,  

(3.14) 

Densities for 0," and D: on lines for which 1 < dD < T are obtained by substituting 

The situation for lines for which T-* < dD < 1 is slightly different, and is shown in 
figure 9(a, b). Two consecutive hexagons are separated by a pair of decagons with a 
common part (a double decagon); one of these decagons is a H E  and is on the right 
side of the RL; the other one is a H b  and is on the left side of the RL. Their densities 
have been calculated above. 

d D  

A D  
PR( D,) = 2T-* -. 

d b = 7 -  d D .  

4. General remarks on excitations of the PT in connection with worms 

Different ways of analysing the PT, i.e. the cut-and-projection method (de Bruijn 1981, 
Duneau and Katz 1985, Katz and Duneau 1986), the Landau-Guinzburg formalism 
(Biham et a1 1986) and the group theoretical approach (Bak 1985, Alexander 1986) 
show that its elementary excitations are phonons and phasons. Moreover using the 
cut-and-projection formalism, the existence of a third non-hydrodynamical mode has 
been established (Kltman et al  1986). This mode consists of local rearrangements 
around the vertices. As already stated in 9 1, it introduces new tiles t' and T' (figure 
1 ( d ) ) ,  and corresponds to a structural transformation. 
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Since these modes are better understood by the cut-and-projection formalism than 
in the pentagrid picture, and since in any case some knowledge of the five-dimensional 
representation of the PT is required for the following, we give now some ingredients 
of this formalism. A more detailed account can be found in de Bruijn (1981a, b) and 
Pavlovitch and KlCman (1987). 

PT can be obtained from the projection of a set of vertices which belong to a simple 
cubic hyperlattice of unit edge in a five-dimensional space E ,  onto a plane PII(y) (the 
physical plane, also called parallel space) spanned by the two unit vectors U, and u2, 
where 

2 n-j 
u1 = (2/5)’12 cos - ej 

j = o ,  ..., 4 5 

2 .-j 
sin - ej. u2 = (2/5)1’2 

j = o ,  ..., 4 5 

The vectors ej = (So j ,  SIj, S, ,  S , ,  6,) form the canonical basis of 
through the point of coordinates ( yi)i=o,...,4. The vertices which 

(4.1) 

restricted to a strip bounded by Pll and another 2-plane parallel to PI, and at a distance 
f i  of it along the main diagonal 0, directed along 

uo= ( 1 / 5 ) ~ / ~  ej. 
j =a,.. . ,4 

This strip projects on the space perpendicular to Pll (the so-called perpendicular 
space) along a rhombic icosahedron. The perpendicular space itself is the external 
product of the (1 11 11) diagonal of the cube, and of the plane PL spanned by the two 
unit vectors u3 and u4 

4 rj 
u3 = (2/5)1’2 cos - ej 

j = o ,  ..., 4 5 
(4.3) 

4 .-j 
u4 = (2/5)”* 1 sin - ej. 

j = o ,  ..., 4 5 

The intersection of Pll( y )  with the hypercubic lattice planes is the pentagrid itself. 
The condition Z y, = 0 corresponds to a special position of Pll(y) (and of the corre- 
sponding strip), which generates a perfect PT. A generic position of Pll( y )  corresponds 
to a generalised PT. 

We shall show that the uniform (infinite wavelength) phason mode and the uniform 
(infinite wavelength) structural transformation mode are located along particular worms 
of the tiling. These two types of modes can be described in term of (different) variations 
of the five quantities (-yl)f=o, ,4. In the pentagrid picture, they correspond to global 
displacements of some sets of lines. 

Let us consider a tiling associated with the set ( Y , ) , = ~ ,  ,4, and introduce an excitation 
of the tiling (Sy , ) ,= , ,  ,4. When (6y,),=,, ,4 is small, not all the regions of the tiling will 
be affected, but only those where the displacements of the lines change the topology 
of the meshes in the pentagrid (figure 12). The vertices of the tiling dual to those 
meshes will disappear, but some other vertices will appear as we show in figures 13 
and 14. The shifts of figure 13 correspond to a phason excitation, while the shifts of 
figure 14 correspond to a structural transformation. We see that each shift introduces 
two mismatches (cf Entin-Wohlman et al 1988). 
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J - 0  J =o  
Figure 12. An excitation of the pentagrid which modifies the tiling. (This excitation 
corresponds to figure 1 3 ( a ) ) .  

8 
Figure 13. Phason excitations of hexagons. ( a )  Flipping of an hexagon H: into 
Two mismatches appear between the flipped hexagon and the two adjacent hexagons 
Flipping of HE into H;. 

From 0 2 ,  we know that with each line of the j t h  set of the pentagrid we may 
associate four non-independent lengths d , ( j )  and d Io( j ) ,  dQ( j )  and d b( j ) .  A change 
of ( S Y i ) i = o ,  ..., 4 will modify d D ( j ) ,  d X j ) ,  dQ and d b ( j )  by SdD(j),  S d h ( j ) ,  SdQ(j) and 
S d b ( j ) .  

Let us consider two specific cases. 
(i)  An excitation (Syi)i=o,...,4 which preserves Z Sy, = 0. This excitation is either a 

phonon mode or a phason mode. Since the phonon mode corresponds to the translation 
of the whole pentagrid, without any change, we will consider only the phason part. 
This mode corresponds to Sy E Pi. We will consider two examples: Sy: = Sy’u, and 
ay ;  = Sy”u4,  where Sy’> 0 and 6y”>  0. We will calculate the resulting values of SdD, 
S d b ,  adQ and S d b  for each set. 

(ii) An excitation which does not preserve X Sy, = 0 is a mixing of a phonon, a 
phason and a structural transformation mode. This excitation will introduce new tiles 
t’ and T’. We will consider Sy; = Sy“‘uo, where ay”’> 0. This choice of Sy yields a 
structural transformation only. As before we will calculate adD,  Sd b, Sd, and Sd b.  

Let us consider a mesh of the pentagrid and a point M belonging to this mesh. 
We choose a mesh which is a triangle, whose edges are segments of j = 0, j = 1 and 
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Figure 14. Structural transformation excitations of hexagons. ( a )  Flipping of H; into an 
hexagon made of a tile T and two tiles t‘. ( b )  Flipping of HE into an hexagon made of 
a tile t and two tiles T’. The arrowing changes accordingly along the worm. 

j = 4 set’s lines such that the intersection (1,4) is on the right of the j = 0 set’s line 
(see figure 15). We can introduce the vector MHO, where Ho is the projection of M 
on the line of j = 0 set. Similarly we introduce MHl and MH,. 

Simple trigonometry allows us to relate the values of MH, with d D ( j = O ) :  

d D ( 0 )  = [ ( h l + h 4 ) 7 -  h O 1  

where hi = MHi. vi. 
We also have 

d ~ ( 0 )  = [ -ho - (h2 + h 3 ) 7 - ’ ]  

db(O)  = [ A o -  ( h ,  + h , ) ~ ]  = - d D ( O )  

d b ( 0 )  = [ + h o + ( h 2 + h 3 ) 7 - 1 ]  = -d,(O). 

d~ ( j )  = - d b(j)  = ( ( hj+ 1 

More generally, considering the triangles based on the j th  set, we have 

- 1 7 - hj (4.4a) 

d,(j)= - d b ( j )  = ( - h j - ( h , - , + h , + 2 ) 7 - 2 ) .  (4.4b) 

j=O 
Figure 15. A triangle along the j = 0 set. 
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Consider now the excitation 

ay: = Sy'u,= Sy" 1, -- - - -- . ( 2 ' 2 7 '  7 1 1  2r' 2 '> 
For a given mesh, this excitation will change hi onto 

h? = hi + ay i .  

Hence d D ( 0 )  will be transformed into dg(0) .  Using ( 4 . 4 ~ )  we have 
d $ ( O ) = ( h ? + h $ ) ~ -  h$ 

= d ~ ( 0 )  - S y ' a (  'T + 2 )  
= dD(0)  - 6 y ' f i T .  

Let us call dD(0)  = +6y'&r. JD(0)  is an important quantity in the following sense: 
the hexagons associated with each line of the j = 0 set for which O <  d D ( 0 )  < (iD(0) = 
SY'&T will be flipped by the excitation 671, as depicted in figure 13. We also have 

dZ(0 )  = d ~ ( 0 )  - 6 Y ' w ( 3  - T )  

= d,(O) - 6 y ' f i / 7  

and ~?,0(0)=6y'&!/r. The lines for which O<d,(O)<&(O) will also be affected by 
the excitations in a similar way. The values of d b  and of d b  will be increased by the 
excitation 6y = Sy'u3, and the hexagons in the corresponding lines will not be shifted. 

Table 2 summarises our results for the above excitations. For a given excitation 
and a given set j ,  it gives the value of d D ( j )  and &( j ) .  

The excitation Sy: = Sy'u3 given by (4.5) is invariant under reflection about the vo 
direction. Under such a reflection the set j = 1 is transformed into the set j = 4,  where 
J D ( l )  = z D ( 4 )  and $(1 )  = &(4). The same argument shows that d D ( 2 )  = &(3) and 
&(2) = J,(3). 

The excitation 

Table 2 

Excitation 

S e t j = O  Set j= 1 Set j = 2  
3 ~ +  1 Jz 

ay: = Sy'u, 6'0' D -cry'Jz7 - db(1) = Sy" - d(2) = 6y' - 

3 7 +  1 fi d*(2) = 6y' - 
2r2 2T2 

2 2 

db(l)  = Sy" - Jz 
dQ(0) = SY'? 

S e t j = O  Set j= 1 Set j = 2  

SyY = Sy"u, dD(0) unchanged (5,(1) = S y " f i  db(2)  = 8y"fii.r 
fi db(2) = 6y" - fi 

d Q ( l )  = 6y" 7 &(O) unchanged 
7 

Every set j 
Sy';;=Sy"'u, d b ( j ) = S y " '  

dQ(j)  = Sy"' 
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is transformed into -ay: by reflection about the yo  direction. Hence, we have 
d,(l) = db(4) and dQ(l )  = db(4).  Also dD(2) = db(3) and dQ(2) = db(3). 

Finally the excitation S y ;  = Sy"'u, is invariant under a fivefold rotation; hence we 
have the same values of d,(j) and dQ( j )  for every j .  

Figure 16(a) shows the various configurations of duals to hexagons in the pentagrid 
that are shifted from right to left (or vice versa) under the excitation Sy: = Sy'u,.  The 
arrows indicate the direction in which the lines are displaced. Figure 16(b) is the 
analogue of figure 16(a) for Sy: = Sy"u,.  Figure 17 describes the excitation 

An intriguing question is the following. Starting from a perfect PT defined by the 
set ( Y ) ~ = ~ , . , ~ ,  we introduce an excitation Sy. Is it possible to distinguish between 
Sy E P, (i.e. a phason excitation) and Sy E D (i.e. a structural transformation) knowing 
only the position of the modified strips in the tiling? To show that the answer is 
affirmative we proceed as follows. 

We denote the height of triangles based on the zeroth line of the set j = 0 by dL(0) .  
Similarly d, for the ith line is denoted db(0) .  We have 

ay;  = Sy'"uo. 

0 < d b( 0) = mT - n + dO,( 0) < 7 

and 

The lines of the set j = 0, which will be affected by the excitation Sy = 6y'u3 are 
those for which 

o < d o ( O ) < S y ' f i = d ; ( O )  

or 

0 < mT - n + d k ( 0 )  < S y ' f i  

And we have to solve the equation of the appendix with x =  d g ( O ) - ( S y ' f i / 2 )  and 
w = S y ' f i .  The result is the following: for T-' < w < T-'+', the values of n are n = 
{&+, ,&+2 ,  fp+3}. This means that in the set j = 0, the distance between affected strips 
is equal to one of the above values of n. In the set j = 1 ,  we have 

3 T - k  1 
O < d b ( l ) < S y ' ~ - = d b ( l )  2 (4.8) 

which will generally give three (incommensurate) distances different from these that 
appear in the j = 0 set. Similarly for the j = 2 set 

o <  d , (2 )  < S y ' f i =  d,(2) (4.9) 

which will give rise to three distances, different from the former. 
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;= 0 

j =  0 

;= 3 j =  2 

;= 0 

l b l  

j =  2 
j z 4  

j.1 

j = I  4 j = O  

j =  1 

j =  3 

j = 2  

j = 4  

Figure 16. ( a )  Configurations of the pentagrid that are flipped under the excitations a y : .  
The arrows indicate the directions in which the lines are moved. ( b )  The same as figure 
16(a)  for 67:. 
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j = 4  

j - 1  

j - 0  j = O  
Figure 17. The same as figure 1 6 ( a )  for Sy:. 

If we now consider an excitation 6y = 6yno,  lines of the sets j = 0, . . . , 4  will be 
modified provided that 

This relation gives also rise to three distances. Since we have the same relation for all 
the sets of the tiling, the three distances will be the same for all the sets. Moreover in 
each set the three distances will appear with the same frequencies. 

Figures 18(a)  and 18(b) show a tiling with the excitation SyT=0.1u3 and 
6yj: = 0 . 1 ~ ~ ;  while figure 19 depicts the excitation 6yI;; = 0 . 1 ~ ~ .  

We have thus devised a method to distinguish between a phason excitation and a 
structural transformation. In a phason excitation, the modified lines in each set appear 
in three distances, which are different for each set. In a structural transformation, 
there are also three distances, which are the same for all sets. 

5. Summary and discussion 

We have considered here strips made of tiles adjacent along two parallel edges. We 
have shown that there are two types of strips. The first type consists of one-sided 
configurations (left-sided or right-sided): these configurations (worms) are separated 
by decagons. The second type consists of hybrids of both left-sided and right-sided 
configurations. The left-sided configurations are separated from the right-sided ones 
by interpenetrating decagons. 

We have studied the statistics of the worms and found that their length (in terms 
of the numbers of hexagons they are made of) can assume only the values L, = f, -2 ,  
n E N ( f n  being a Fibonacci number). The density of worms of length L, C (  L ) ,  satisfies 
C (  L , )  - 1/ L,.  Worms terminate on decagons. There are several types of decagons, 
shown in figure 8 ( c - e ) .  The statistics of the decagons are calculated in Q 3. 

We have also introduced perturbations in the underlying pentagrid and analysed 
the statistics of the distances among worm lines which are affected by those perturba- 
tions. We have shown that a phason excitation is located along worms such that the 
distance between two affected worms belonging to the set j may take only three possible 
values. These values are different for each set. A structural transformation excitation 
is also located along worms. The distance between two perturbed worms takes only 
three values, which are the same for each set. As we have remarked in the introduction, 
the relation of this analysis to real physical systems is not obvious. Should we associate 
the generation of mismatches with activation energy? Is their propagation (along worm 
and through decagons) described in terms of a thermal hopping process? What are 
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Figure 18. Positions of shifted hexagons under the excitations ( a )  ay : ,  ( b )  a y ; .  

the characteristic energies involved? Also, is this picture affected by the presence of 
other (topological) defects? All these questions await 
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Figure 19. Positions of the new tiles that appear under the excitation 87’;: 

Appendix 

The aim of this appendix is to solve equation ( 3 . l b )  which is of the form 

I x + ~ m - n l < w / 2  ( A I )  

O < w < l  and 1x1 < w / 2 .  (A21 

where n and m are integers and x and w are two real numbers such that 

The second condition of equation ( A 2 )  means that for m and n equal to zero, equation 
( A l )  is obeyed, and the problem is to find the pair (n, m) such that equation ( A l )  is 
obeyed ( n  + m being the minimal positive number). 

We interpret equation ( A l )  as follows. Consider a circle of unit perimeter centred 
at D and a ‘window’ of length w = OA’ (see figure 2 0 ) ,  measured along the perimeter, 
starting at 0. Start from point S at a distance x + w / 2  from 0 along the perimeter. 
Since equation ( A 2 )  is obeyed, S is always within the window. We then move in steps 
of length 7 along the circle and reach point F (not shown in figure 17) .  Equation 

Figure 20. ‘Windows’ on the unit circle. 
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(Al) states that F must be within the window. Suppose that 

7-’ < W < ?-’+I 

which we write as 

P* ” = ?-’+I - 

Let us also define A, B, C, B‘ and C’ on the unit circle, such that 

O A  = ~ - p + ’  OB = r--’ oc = 7-’-’ B’B = C’C = A’A = p. 

We now note that for S within the segment OC’, we end up back in the window after 
& steps of length 7; for S within CA’ we need &+, 7-steps and for S within CC’, we 
need&-, 7-steps, where& are the Fibonacci numbers defined in Coxeter (1969). When 
p = 0, i.e. w = ?-’+I,  the only 7-step ‘periodicities’ are f p  and &+, , corresponding 
respectively to the windows OC and CA. 

Let us first consider the case w = T - ~ + ’  corresponding to the window OA. We have 
the following relation (Coxeter, 1969): 

7 .  = ( -7)  - P + & + l .  (‘45) 

When p is odd, this reads 

.& = F P  +&+1 (A6a) 

7& + ?-’-I = ?-’+I + & + I .  (A661 

These equations can be interpreted as follows: from (A6a) we see that choosing a 
starting point at 0, after f ,  7-steps, the final point is B (OB = T-’); from (A6b) we see 
that choosing C as our starting point, after S, r-steps, we end up at A. This means 
that the interval OC is mapped onto the interval BA. If we replace p by p+l in 
equation (A5) we have 

T&+l + T-’-l - -&+2 (A7a) 

T&+l -t ?-‘+I + 7-’ (A7b) 

from (A7a) we see that choosing C as our starting point (OC = T-’-’), after&+, 7-steps, 
the final point 0 is reached; similarly from (A7b) after&+, r-steps take as from A to 
B (OB = r-’). Hence the interval CA is mapped onto the interval OB. Similar analysis 
holds for p odd. Hence we see that for o = r-’+’, the pairs ( n ,  m )  = (&+, ,&) and 
(&+,,&+,) are solutions of equation (Al). There are no solutions with ( m + n )  smaller 
(that would correspond to an approximant to the golden ratio, better than its contonuous 
fraction expansion). 

When p # 0, the demonstration of A1 goes as follows: let us consider the points 
A’, B’ and C’ ( p  is taken to be even). Then the interval OC’ is transformed by& 7-steps 
into BA‘ and the interval CA’ is transformed by&+, 7-steps into OB‘. We are left with 
the interval C’C, which is transformed by& 7-steps into A‘A and after&+, 7-steps into 
B’B. Hence points in the interval C’C require, S, +&+, =LC2 7-steps. The solutions 
of equation (AI) are the pairs ( n ,  m) = 

The relative weight of a given worm of length m + n + 2 is obtained by noting that 
it is proportional to the range of values of x (equation AI), for which this worm exists. 

,&I,  { & + ~ , f p + J  and {&+3 ,&+J .  
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